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Using the moenotonic Lagrangian grid {MLG) as a data structure
inthe direct simulation Monte Carlo (DSMC} methodology produces
an approach that automatically adjusts grid resolution to time-vary-
ing densities in the flow. The MLG algorithm is an algorithm for
tracking and sorting maving particles, andg it has a monotonic data
structure for indexing and storing the physical attributes of the
particles. The DSMC method is a direct particle simulation technigue
widely used in predicting rarefied flows of dilute gases. Monoton-
icity features of the MLG ensure that particles close in physical
$pace are stored in adjacent array locations so that particle interac-
tions may be restricted to a “template” of near neighbors. The MLG
templates provide a time-varying grid network that automatically
adapts to local number densities within the flowfield. Computational
advantages and disadvantages of this new implementation are dem-
onstrated by a series of test problems. ® 1995 Academic Press, Inc.

1. INTRODUCTION

In ararefied gas flow, the motions and interactions of individ-
ual particles are important, To numerically model such a flow,
a microscopic particle-dynamics approach based on the Boltz-
mann equation can be used. In this approach, a gas is treated
as a collection of particles whose positions and velocities are
individually tracked. It is the only approach that is valid when
the freestream Knudsen number Kn,

Kn = AL, (1)

is of the order of unity or greater (where A is the mean free
path and L is the system characteristic length). A fluid cannot
be accurately modeled as a continuous media for Knudsen
numbers of 0.2 or greater,
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Another approach to high Kn flows is the direct simulation
Monte Carlo (DSMC) method [1], a direct particle simulation
technique based on kinetic theory, The fundamental idea of
DSMC is to track a very large number of test particles, repre-
senting one or more actual gas molecules of physically correct
molecular size, through representative collisions and boundary
interactions and then to modify their positions and velocities
appropriately in time. The core of the DSMC algorithm consists
of four primary processes: move particles; index and cross-
reference particles; simulate collisions; and sample the flow-
field. The simplicity of the algorithm allows for straightforward
incorporation of higher-order physical models and for applica-
tion to complex geometries. The primary approximation of
DSMC is to uncouple the molecular motions and intermolecular
collisions over a sufficiently small time increment. Particle
motions are modeled deterministically, while collisions are
treated statistically. It is the probabilistic treatment of the colli-
sion process that restricts the applicability of the method to
dilute gas flows. For monatomic gases undergoing binary colli-
sions, DSMC has been shown rigorously to be equivalent to
solving the basic Boltzmann equation [2]. The statistical error
of a DSMC selution is inversely proportional to the square root
of the total number of simulated particles, or sample size N,
while the computational work involved is proportional to N.

While the DSMC technique has been extremely successful in
predicting rarefied flows, it is limited by the large computational
requirements of practical systems. Significantly greater compu-
tational resources are required, compared to numerical methods
based on the Navier—Stokes equations, for problems in which
both approaches are valid (i.e., near-continoum flows with slip
effects). Further reductions in DSMC computational times are
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needed to enable tractable analyses of complex geometries with
complex physical processes such as chemical reactions, wall
catalysis, radiation effects, and ionization effects, Such reduc-
tions are posstble through using parallel computers and efficient
paralle] algorithms. The parallelization. of the DSMC technigue
has been the focus of many recent research efforts, such as the
work of Wilmoth, Carlson, and Bird [3], Wong and Long [4],
and Dietrich and Boyd [5].

In this paper, we report on our efforts to combine the DSMC
with a method for particle tracking and sorting, the monotonic
Lagrangian grid (MLG). The MLG data structure stores the
locations and other attributes of particles in computer memory
in a manner consistent with particle locations in physical space
and maintains this order as the computation evolves. Using the
MLG as the database structure for DSMC allows a time-varying
network of nearest-neighbor *‘templates’ to be used in lieu of
the space-fixed cells required by DSMC for collision modeling
and macroscopic property evaluation. The combination of
DSMC and MLG has several significant benefits, namely, an
automatically adapting grid, improved prediction accuracy (for
a given grid size), reduced user effort, and decreased computa-
tional requirements through efficient parallelization [6]. Exten-
sions of the DSMC-MLG to massively parallel computers offer
truly significant advances in what can be computed.

2. MONOTONIC LAGRANGIAN GRID

The MLG [7-10] is a method of constructing and maintaining
data structures for large particle simulations that is optimal for
use on parallel and vector computers. Since the MLG maintains
a direct correspondence between the indexing and the position
of the particle, it is well suited for problems involving substan-
tial local density variations. Recent applications of the MLG
have been to problems in molecular dynamics, granular flow,
and battle management [11-15].

The MLG data structure requires minimal memory and uses
monotone arrays for indexing geometric positions and other
physical attributes of the moving particles. The monotonicity
feature ensures that particles close in physical space are stored
in adjacent array locations. For a three-dimensional grid, the
monotonicity constraints are

x(j k) =x(+ 1,7, k)
v, R =y, j+ 1,k)
2, j. k) =z, L k+ 1)

forl=i=~N,— 1,alljallk
forl =j=N,— lalli,allk (2)
forl =k=N,— l,alliallj

where the set (N,, N,, N,) defines the data structure and (i, j,
k) represents the grid indices. Each particle is assigned three
indices in the MLG data arrays for its three spatial coordinates.
Other particle aitributes, such as velocity components, are
grouped together and stored as a single object in a record of
fixed length (i.e., words or bytes). Objects are then arranged
in computer memory by axis. Efficient mapping to memory
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locations depends on the computer memory architecture; opti-
mal MLG libraries are available for various computer platforms.

Figure 1 gives an example of a simple two-dimensional MLG
linking 16 particles [16]. The conditions defined by Eq. (2) are
not sufficient to define a unique ordering of the particles within
the dafa structure. Previous molecular dynamics applications
have demonstrated that some rather undesirable ML.G orderings
can occur. The guestion of quality of an MLG and the issues
involved in constructing an MLG with the best properties are
addressed in a recent study [17].

The sorting algorithm used to construct an MLG from a
random distribution of particles has an operation count which
scales as N log N. The basic MLG procedure is to sort all
particle record data according to the monotonicity requirements
of the first spatial direction, partition the result into subsets,
and then sort each subset according to the next spatial direction,
and so on. When all constraints are satisfied, particle data is
considered in ““MIG order.”” An illustrated example of this
construction process is given by Picone et al. [18]. In time-
dependent applications, the local monotonicity conditions are
usually not met after individual molecules move and interact
within a time interval. For instance, Fig. 2a shows a 4 X 4
MLG with corresponding velocity vectors at time ¢, while Fig.
2b shows the same 16 particles no longer in MLG order at
time ¢ + Af,. To reestablish the instantaneous correspondence
between the indexing and the spatial locations of the particles,
the MLG uses an algorithm that interchanges particle data in
computer memory until the monotonicity conditions are rees-
tablished. Such restructuring is discrete, reversible, efficient
(faster than N log N), and corrects local monotonicity violations
without visible global changes. A resorted 4 X 4 MLG at time
t + At, is shown in Fig. 2c.

Within a well-structured MLG, a particle’s most influential
neighbors are at most two or three indices away in data memory
for most of the interaction laws we use. Using this concept,

{4, 4)

{1, 12,

(1.2

{1, 1)

\

(3.9

FIG. 1. Example of a two-dimensional monotonic Lagrangian grid.
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FIG. 2.

A 4 X 4 MLG before (a) and after (b) the particles are moved,
and after resorting (¢). Arrows represent instantanecus velocity vectors in (a},
identify initial molecular positions in {(b).

we define the nearest-neighbors template by those particles that
may have significant interactions with the center particle. The
size of this template is controlled by specifying A,,, the maxi-
mum index offset. Particles whose indices are offset from a
given particle’s indices by an amount less than or equal to Ay
comprise the template. If the maximum index offsets for i, j,
and k have the same value A, then the number of near neigh-
bors, Ny, is given by

N = QA + 17 — L 3

Hence, interacting particles are located within a small contigu-
ous portion of the computer memory spanned by 2A,,, providing
a substantial computational cost savings over methods which
must search for near neighbors {18]. The programming logic is
natural for massively parallel machines, where data for adjacent
particles are stored in adjacent processors.

3. MLG IMPLEMENTATION IN DSMC

In a typical DSMC application, all simulated test particles
are individually tracked as they move through a physical space
that has been subdivided into & number of cells. This space-
fixed cell network provides the geometric areas and volumes
required to evaluate macroscopic How properties. It is also used
by the collision process, in which only particles located within
the same cell at a given time are allowed to interact. To maintain
an accurate solution, cell sizes must be small in regions of large
macroscopic gradients [19], Specifically, the dimensions of the
cells must be much smaller than L, the scale length of the
macroscopic gradients [20]. Using local values of density p,
pressure p, temperature T, or volume V, this scale length is
given by

forp=p,p, T orV. (4)
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Maintaining this requirement is difficult for complex problems
whose flowfield properties are not predictable.

It is possible to eliminate the cell dependency of the DSMC
collision process by defining a locat subset of possible collision
partners in a specified cutoff distance, R, . This approach permits
only neighboring particles to interact. However, it is computa-
tionally impractical for large sample sizes because the cost
scales as the square of N, and so directly conflicts with the
DSMC requirement on the size of N for acceptable statistical
accuracy.

The DSMC algorithm used here is based on Bird’s original
implementation [1]. A monatomic gas is modeled as a collection
of elastic hard-sphere molecules. The collision routine, referred
to as the “‘no time counter’’ or NTC approach [19], is a probabi-
listic scheme that relies on acceptance—rejection statistics to
collide particles before they are randomly scattered. The accep-
tance-rejection technigue uses random numbers to determine
whether a randomly selected pair of molecules will interact,
The probability of the two-body collision is given by the product
of the total collision cross-section oy and relative velocity ¢,
divided by the product’s maximum value within the cell. Bird’s
original indexing scheme [1] is retained to serve as a benchmark
for both the one- and two-dimensional MLG-based implementa-
tions.

Incorporating the MLG into the DSMC test program requires
three primary steps:

1. Eliminating space-fixed cells in lieu of nearest-neigh-
bor templates;

2. Replacing the standard indexing scheme with ML.G par-
ticle tracking and sorting routines;

3. Calculating areas and volumes of the time-varying tem-
plates.

These modifications result in a number of procedural changes
to the standard DSMC method, as highlighted in the DSMC-
MLG flowchart presented in Fig. 3. The details of this process
are described here for a two-dimensional problem; it is straight-
forward to extend these ideas to three dimensions.

The first step, to eliminate space-fixed cells, requires two
additional operations immediately after the zero-time state of
the gas is set (Fig. 3): construct the MLG, and then subdivide
the MLG into a specified number of nearest-neighbor templates.
Taken together, these are analogous to, and effectively replace,
the grid generation required prior to any standard DSMC appli-
cation.

The MLG construction algorithm uses a shell sort scheme
[21] to sort the random distribution of molecules into MLG
order. Compared to subsequent sorting steps that reestablish
MLG monotonicity, this initial step typically involves the most
computational work and therefore is important to optimize.
Several sorting controls are available for this purpose; optimal
settings, however, must be determined for different problems.

The indices that identify individual molecules within the
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FIG. 3. DSMC-MLG flowchart.

MLG are next grouped into subsets based on computer memory
location. Since there is a one-to-one correspondence between
the indexing and spatial locations of the molecules, this group-
ing process also defines the grid, which consists here of a
network of templates in physical space. The current MLG im-
plementation specifies the grid size by choosing the number of
templates along each axis. The same grid size is used for each
independent computation of an ensemble. Figure 4 shows a

template 11 tempiate 15

|

template 1 template 5

FIG. 4. Subdivision of a 15 X 9 MLG into a grid of 15 nearest-neighbor
templates. Shaded regions delineate template areas.
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schematic of a 15 X 9 MLG that has been subdivided into
fifteen 3 X 3 templates. Note that every molecule belongs to one
and only one template. The relative positions of the templates do
not change during the course of a simulation; neither do the
index pairs (i, j) of each template. For instance, template 1 is
always made up of particles whose indices (i, j) are given by
1 =i=3and 1% = 3. However, the actual particle associated
with an index pair may vary from timestep to timestep. For
simplicity, templates are assumed to have equal population
counts (that is, the same number of particles in each template)
and to be square in index space.

The second step requires replacing the standard DSMC mo-
lecular indexing with MLG-based routines (Fig. 3). Sorting and
tracking algorithins are used to resort particles into MLG order.
The resorting process may change a template’s physical size,
shape, and individual particle makeup; this is depicted in Fig.
5, where a 3 X 3 template is carried through the same proce-
dures described in Fig. 2. It is this resorting step that automati-
cally adapts the grid in physical space to local number densi-
ties,

The third step is to evaluate individual template areas, which
are required by the collision modeling and sampling steps (Fig.
3). For instance, the collision counter calculation in the NTC
model, given by

N = N% S(UT Cr)max Atg
® 24, ’

i

(5)

depends on instantanecus template areas A[“_ in a two-dimen-
sional simulation. In this equation, N, represents the template
population, or the total collision cross-section, ¢, the relative
velocity, and S the ratio of actual-to-simulated molecules. Simi-
larly, macroscopic properties generated during the sampling
step are valid at the centers-of-mass of each of the templates,

which in turn are functions of A'.—,-'

{a) ®) {©
time ¢ time HAfg
'/“t 4) -4)
(2,.#\0

‘pefore resorting

FIG. 5. A3 X 3template before (a} and after (b) the particles are moved,
and after resorting (c). Arrows represent instantaneous velocity vectors in (a),
identify injtial molecular positions in (b). Shaded regions delineate template
areas.



COMBINING THE MLG WITH A DSMC MODEL

Two area-evaluation methods were tested here. Method I
approximates the area of each template by the area of a rectangu-
lar region assigned to the template. The sides of this rectangular
region pass through the midpoints of segments A-B, A-C,
A-D, and A-E, as shown schematically in Figure 6. Collectively,
these nonoverlapping rectangles account for the entire computa-
tional domain. In equation form, A, is given by

AIU = %[(xl.cm}iHJ = (e di-1 HFoemdijor — Ghembiy-115 (6}

where the subscript cin indicates a center-of-mass value. Initial
DSMC-MLG simulations showed that the local accuracy of
method T decreases as density variations increase locally. This
is because the method is first-order accurate; large changes in
local number density in either direction that are nonlinear are
not accounted for in Eq. (6).

Method 11 was proposed as an improvement on I for simufa-
tions with large density variations. Here a template area is
computed by first subdividing the template into pie-shaped
slices, as sketched in Fig. 7. Each of these triangular sections
is made up of two boundary molecules and the template center-
of-mnass. The individual triangular areas are evaluated and
summed to give the area of the template. This summation
process leads to a compact expression which does not involve
the location of the center-of-mass {22). With boundary mcle-
cules labeled P;, P, ..., P, in a counterclockwise fashion, A‘u
is given by

A‘w =3llxy Hays+ ot an)

7
=t yput ooyl 0

& center of mass
% midpoint

FIG. 6. Schematic for template arca evaluation method 1. Shaded regions
defineate template areas.
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FIG. 7. Schematic for template area evaluation method 1L Shaded regions
delineate template areas.

where x, and y, are coordinates of two different boundary
molecules. However, as seen in Fig. 4, the summation of all
individual cemplate areas accounts for only 75-80% of the
computational domain. To account for the rest of the domain,
weighting factors based on relative areas are computed for the
ternplates. These weighting factors are then used to proportion-
ally increase individual template areas until the total computa-
tional area is accounted for, preserving relalive lemplate sizes.
In a computarional load study vsing the Rayleigh test problem
[6], the evaluation of template areas using method 11 accounted
for 0.6% of the computational work associated with a single
independent calculation. For the DSMC-MLG results presented
in this paper, this was the method of choice.

Regions of high molecular concentrations and extremely
large gradients may pose a problem to using method II to
evaluate areas. For example, Fig. 8 presents a schematic of a

& center of mass

FIG. 8. Schematic of a 4 X 4 template that may cause area evaluation
difficulties. Dark solid and dashed lines represent x and y links, respeciively.
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highly skewed 4 X 4 template whose particles are. in MLG
order, but whose irregular shape may cause inaccuracies that
necessitate a larger ensemble size for a given statistical accu-
racy. A MLG regularization technique [17] has recently been
developed that minimizes the occurrence of such highly skewed
templates during MLG resorting procedures. In a subsequent
study [22], this regularization technique was incorporated into
DSMC-MLG dnd successfully demonstrated for this purpose.

4. TEST PROBLEMS

The initial development and testing of the DSMC-MLG was
carried out in a series of steps on Sun Sparc workstations. These
steps included numerically validating one- and two-dimensional
DSMC-MLG codes and demonstrating the adaptive gridding
in several test problems.

Ravleigh Test Problems

Variations of the classical Rayleigh problem, a standard
DSMC validation problem [4, 23], were used to test one- and
two-dimensional versions of the DSMC-MLG, and to highlight
the advantages of the new algorithm. Ouly two-dimensional
results are presented here. Nondimensiona! variables are de-
noied by a tilde.

The first 2D Rayleigh test problem, shown scheinatically in
Fig. 9, consists of a flat plate instantaneously heated, and then
accelerated to a constant speed through an undisturbed gas.
The plate speed, uy, , is twice the most probable molecular speed
of the undisturbed gas, V,,,, and the plate temperature 7y, is
1.6 times that of the undistarbed gas, T,. The plate surface is
modeled as a fully diffuse boundary, where the physical attri-
bules of the reflected motecules are distributed according to
the half-range Maxwellian distribution based on wall tempera-
ture. The remaining boundaries are specularly reflecting; that
is, the normal velocity component of an incident molecuie is
reversed while the parallel component remains unchanged. The

Y
specular
Vo= 10— d
specular specular
fully diffuse
— x
flat plate A l

Y= 20

FIG.9. Schematic of a two-dimensional version of the Rayleigh validation
problem. Boundary conditions: ulx, ¥, 0) = (; u(x, 0, §) = 2V, for ¢t > O
T(x, 0,0 = 1.6T, for ¢ > 0.
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TABLE

Computational Parameters for the Rayleigh Validation Problem

DSMC DSMC-MLG
(N Mo 50 49

Mo 40000 30200
Axlhg 0.5 0.5¢
N 05 0.54
AT, 0.4772 0.1772

TALT =0,

gas initially consists of a uniform distribution of hard-sphere
molecules. The one-dimensional Rayleigh solution 1s repro-
duced at ¥ = F./2 at early times in the calculation, before
disturbances from the left, right, and upper boundaries have
had a chance to disrupt the one-dimensional nature of the flow.

Simulations were performed using both the standard DSMC
and the new DSMC-MLG. The parameters describing the calcu-
lations are listed in Table I. Ensembles consisted of 1000 inde-
pendent computations, each using 800 celis or templates in a
40 X 20 arrangement. The physical size of each cell and tem-
plate are the same only at time zero, Throughout the simulation,
each space-fixed cell initially contains 50 molecules, while
every MLG template is 7 X 7. The global timestep, Az,, is
20% of the mean coliision time of the undisturbed gas. All
variables are nondimensionalized [1]; one unit of length is a
freestream mean-free path, and a unit of time is equivalent to
the freestream mean collision time.

Comparisons of DSMC-MLG and DSMC axial velocity,
number density, and temperature profiles at three different sam-
pling time intervals are shown in Figs. 10a—c. The DSMC
results shown here agree with tabulated results [1] given by
Bird. The location of each symbol in the curves represents the
ensemble-averaged coordinates (the grid distribution) of the
center-of-mass of a particular template or cell. At time zero,
the symbol locations for both simulations are identical, but they
vary at later times because the MLG grid is changing in time.
Figure 10d compares the shear stress acting on incident mole-
cules at the wall,

To demonstrate the advantages of the DSMC-MLG, the two-
dimensional Rayleigh validation problem was modified to pro-
duce steeper gradients and stronger recirculation regions in the
flow. Specifically, both the lower and upper boundaries are
instantaneously heated to 1.6 T, and then set in motion at a
speed of 10 Vy,. The upper and lower boundaries are modeled
as fully diffuse, while the left and right boundaries remain
specularly reflecting. The global timestep, A7, is set to 0.03545
(e.g., 4% of the freestream mean collision time), and the ensem-
ble consists of 200 independent computations. All other compu-
tational parameters remained the same as in Table L

The high-gradient test problem was run using both the NTC
collision model, and Bird’s original *‘time counter’” or TC
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FIG. 10.  Comparison of DSMC-MLG and DSMC axial velogity (), number density (b), and temperature (c) profiles at various sampling times, and time

histories of shear stress acting on inc¢ident molecules at the wall (d). Rayleigh

model [1]. Although DSMC-MLG results were identical using
both collision models, DSMC results were not. Only TC model
results are discussed here.

A qualitative comparison of the TC-based DSMC-MLG and
the DSMC solutions across the symmetry line of Fig. 11 reveals

FIG. 11.
problem with &, = @, = 100, fi. = T = 1.6. (Note. Grids overlaid
for reference.}

DSMC-MLG and DSMC streamtraces at £ = 3.722. Rayleigh

validation problem, &, = 2.0, T, = 1.6, (Note. Resuits sampled at ¥ = %,./2.)

little ditference between the two. The top half of the figure
shows 10 representative streamtraces traversing the DSMC
flowfield at a nondimensional time of 3.722, or after 105 time-
steps. Dotted lines connecting the centers of the 800 square
cells which make up the space-fixed grid are overlaid for refer-
ence. The bottom half of Fig. 11 shows comparable DSMC-
MLG streamtraces. In this case, the overlaid, dotted lines con-
nect the average center-of-mass locations of the nearest-neigh-
bor templates. Figure 12 shows contours of the number density
in the interior of the computational domain at = 3.722. DSMC
predictions are displayed in the top half, and DSMC-MLG
predictions in the bottom half; grids are again overlaid for ref-
erence.

A quantitative comparison of the results of the two cases
shows significant differences in the density field predictions,
especially near the hot moving boundaries. In an attempt to
explain the differences between the two solutions, the DSMC
simulation was rerun and individual cell populations were moni-
tored. At later times in the simuiation (e.g., f > 2), the popula-
tions of many cells near the upper and lower boundaries feil
below 20 particles per cell, and sometimes even below 10. As
a consequence, instantancous collision rates predicted by the
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c am Normalized Scalar Runtimes for the Rayleigh Test Problems
B 2.88
;' ;:: Validation High-gradient
8 214 problem problem®
7 1.89
] 184 DSMC 10 23
5o DSMC-MLG 3.1 11.0
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2 068
1

0.40

FIG.12. Comparison of DSMC-MLG and DSMC umber density contours
at £ = 3.722. Rayleigh problem with @, = &, = 10.0, i, = T, = 1.6. (Note,
Grids overlaid for reference,)

TC method within these sparsely populated cells were suspect.
The large differences in collision rates predicted by the two
algorithins are shown in Fig. 13. Incorrect collision rates near
the upper and lower walls of the DSMC simulation have a
large effect on the results in the bulk of the computational
domain. Two other factors also contribute to the guantitative
differences between the DSMC-MLG and the DSMC solutions.
The DSMC calculation violates the fundamental requirement
of small cell sizes in regions of large macroscopic gradients
(such as near the moving boundaries and in the downstream
corner) at later sampling times. In addition, the DSMC-MLG
simulation benefits from automatic grid restructuring, In the
test problem shown here, on a small scalar computer, the cost
of the DSMC-MLG improvement in the resnlts is a factor of
four in the runtime.

The purpose of this high-gradient problem was to highlight
certain features of the adaptive gridding automatically provided
by the MLG-based algorithm. Conditions were specifically cho-
sen that are known to produce inaccurate DSMC results if they
are not anticipated and appropriately handled. The TC-based
simulation was particularly susceptible due to the well-docu-

100 24.0
221
262
18.3
16.4

D
c
B
A
9
) 14.94
T
6
Bl
4
4
2
1

=T

[DEMCMLG] -

124
10.6
87

25 5.8

48

= 29

0'%.0 5.0 10.0 15.0 20.0 1.0
X

FIG. 13. Comparison of DSMC-MLG and DSMC collision rate contours
at == 3,722, Rayleigh problem with &, = @, = 10.0, T, = T,,, = 1.6. (Note.
Grids overlaid for reference.)

mented tendency of the collision moedel to produce inaccurate
collision rates in highly noneguilibrivm flows. The DSMC-
MLG method did not experience problems with the TC model
because of the basic definition of a template in the MLG,
which is tantamount to cell populations remaining constant. In
addition, the adaptive gridding fulfilled DSMC cell-size require-
ments in most of the computational domain by providing higher
resolution in regions of high densities. This was achieved with-
out any additional user interference,

Table 1l sumnmarizes the relative scalar performance of the
two Rayleigh problem simuiations; cpu times have been scaled
to reflect equivalent ensemble sizes and normalized by the
smallest value. These values are indicative of either collision
mode! for both algorithms.

Circular-Diaphram Test Problem

A series of shock tube problems was simulated to further
highlight the adaptive gridding capabilities of the DSMC-MLG.
The test problem discussed here models a circular diaphram
that initiaily separates the driver and driven gases at time zero.
The starting geometry is shown in Fig. 14, where a 90° section

Yo 25 _[ specular

specular 1 specular

diaphram
{r=6.25cm)

—_—X

specular

Xgax= 12.5 cm

FIG. 14. Schematic of the circular diaphram shock tube problem. Initial
conditions: ny = 10a,; Ay = 0.1A;; Ty = T\.
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TABLE 111

Computational Parameters for the Circular Diaphram Shock Tube
Problem

Driver section Driven section

N, 25 25

i 16287 14963

Ay (cm) 1.0 10.0
[(AX)/ALy 0.2 0.05
[(AY}S AL 0.2 a1
At () 33E — 07 3.3E ~ 07
Tty (cm™) 4.1E + 14 41E + 13

of the diaphram is positioned in the lower left comer of a
12.5 cimt by 25.0 cm rectangular domain. Both gases, initially
at the same temperature of 273 K, are modeled as hard-sphere
helium atoms. The driver-to-driven number density ratio is
10: 1. The mean-free path of the undisturbed gas, A, 15 1.0 cm
in the driver section and 10.0 cm in the driven section. The
ratio of actual-to-simulated molecules, §, is set to 7.81 X 10"
in both sections. Artificially high values of number density
are used to keep computational requirements reasonable. All
computational boundaries are modeled as specularly reflect-
ing.

An ensemble of 500 independent computations is sufficient to
show the adaptive grid performance. A rotal of 1250 templates,
arranged in a 25 X 50 grid, were vsed in each computation,
Each template contains 25 atoms in a 5 X 5 mesh. The global
timestep, At,, is set to 50% of the mean collision time of
the undisturbed driver gas. Values of various computational
parameters used in each independent calcnlation are listed in
Table II\. The simulation used the NTC collision model.

The evolution of the mass density is shown by the sequence
of contours in Fig. 5. The time-dependent variations in p
caused by the expansion of the high-density helium into the
driven section afier the diaphram is removed resolts in changes
and readjustments of the DSMC-MLG grid. The evolution of
this adaptive grid, represented by lines that connect the average
center-of-mass locations of the time-varying templates, is pre-
sented in Fig. 16. lnitially, 52% of the MLG templates were
distributed thronghout the driver section. The shapes and areas
of the templates gradually change as the driver gas propagates
radially outward from the lower left comer of the computa-
tional domain.

To achieve comparable accuracy using the standard DSMC
algorithm without adaptive gridding, more than 1250 space-
fixed cells would have to be used. For instance, the maximum
dimensions of each cell in a space-fixed grid are dictated by
the minimum local values of A encountered during a simulation.
Local property changes as the flow evolves must be anticipated
{(possibly using a preliminary coarse-grid simulation) to ensure
that DSMC requirements are met. If adaptive gridding is not
available, the DSMC grid in the driven section would require
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FIG. 15. DSMC-MLG density contours at four sampling times. Circular
diaphram shock tube simulation. {Nore. Densities along the computational
boundaries are not shown.)

substantially more cells than the 599 templates used in the
present DSMC-MLG simulation, The best fow resolution for
a given grid size is achieved automatically by the DSMC-
MLG algorithm.

Effectiveness of Grid Adaption

The changes in the grid in the circular-diaphram test problem
raise several questions. How effective is the adaptive gridding?
Are local cell-size requirements met at all times? Can the adap-
tation process be improved? These questions can be addressed
through a quantitative analysis of the time-dependent grid-
ding process.

To assess the effectiveness of the grid adaption, diagnostic
quantities are required. For accurate DSMC simulations, linear
cell dimensions must be smaller in each spatial direction than
the scale length L of the local macroscopic gradients [20]. For
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FIG. 16. Time evolution of the DSMC-MLG adaptive grid. Circular
diaphram shock tube simulation.

a two-dimensional simulation, these requirements, with the help
of Eq. (4), can be expressed as

-

@
Ax=1L, = fi =pp,TorV 8
x=1L oglon] orp=pp, 1,00 8
and
Ayl = L foro=p,p, T, or V. 9)
T |agloyl

Since DSMC-MLG macroscopic properties are valid at the
average center-of-mass of each ML.G template, finite difference
expressions can be used to approximate the derivatives. Using
second-order accurate central differences for interior templates,

property ¢ and appropriate second-order accurate finite differ-
ences are used to represent the derivatives of p.
Figure.17 presents variations of Ax/L, and Ay/L, for the

AxiL,
Ay/L,
0.30
0.25
0.20
0.15
0.10
0.05
0.00

FiG. 17. DSMC-MLG Ax/L, and Ay/L, distributions at = B.OE —
035 s. Circular diaphram shock tube simulation.
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circular-diaphram test problem 8.0 X 107% s into the simulation.
Small differences exist in the two distributions. This directional
bias in the grid adaption is caused by the use of a fixed grid
size from one time interval to the next. Sorting procedures of
the current DSMC-MLG algorithm require specification of an
“x by ¥ gnd size at time zero that does not change during
the course of a simulation. Hence, the effectiveness of the
current implementation of the DSMC-MLG adaptive gridding is
directionally dependent. Nevertheless, values of the diagnostic
quantities are significantly less than one everywhere, indicating
that DSMC cell-size requirements have been met throughont
the flowfield, even though there is an order-of-magnitude varia-
tion in the mean-free path.

5. DISCUSSION AND CONCLUSIONS

Several advantages of the DSMC-MLG algorithm have been
demonstrated in the previous section using various test prob-
lems. First, the MLG adds a time-varying grid that automatically
adapts to the local number densities in the flowfield. Second,
the MLG routines for sorting are already optimized for two-
and three-dimensional applications on parallel computer archi-
tectures. Finally, the TC collision model can be used with
confidence in DSMC-MLG simulations, if so desired.

The primary feature of the DSMC-MLG algorithm is the
automatic grid adaption provided by the Lagrangian data struc-
ture. A number of computational benefits arise as a direct conse-
quence, including: automatic changes in grid resolution ac-
cording to properties of the flow; relaxation of the DSMC
requirement that cell dimensions be very small in directions of
large macroscopic gradients [19]; higher accuracy for a given
grid size; and simplified representation of complex geometries.
All of these help to improve the performance of the original
DSMC algorithm and increase user-friendliness.

Modeling more complex geometries is possible by distribut-
ing molecules along stationary or moving solid boundaries that
define the geometry itself. A flag added to the physical attributes
stored by the MLG data structure identifies these molecules as
boundary points so that they can be treated appropriately.

The sub-cell technique [20] is highly recommended by Bird
for use within collision modeling procedures. The purpose of
" the sub-cell technique is to improve particle interaction accu-
racy by ensuring that collisions occur only between near neigh-
bors. The basic principle of this technique is inherent to the
Lagrangian data structure employed by DSMC-MLG. That is,
collision partners in a DSMC-MLG simulation are chosen from
within time-varying MLG templates which, by definition, are
comprised of near neighbors. Specifying & maximum index
offset, A,,, for collision pair selection further restricts inter-
actions to nearest neighbors.

Previous applications of the MLG have used optimized two-
and three-dimensional algorithms on parallel machines. Fur-
thermore, MLG performance does not depend on problem size
because of the direct scalability of the MLG algorithms on
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parallel architectures. Massively parallel computers offer com-
puting speeds that are potentially orders of magnitude faster
than vector and scalar equivalents. Implementing the new
DSMC-MLG algorithm on massively parallel computers will
significantly lower computational costs, allowing the simulation
of large-scale transition regime flows that were previously not
feasible. In fact, a recent DSMC-MLG implementation on a
Connection Machine achieved a two orders-of-magnitude de-
crease in computing time with minimal optimization over the
serial computer counterpart [22].

The incorporation of the MLG in direct simulation Monte
Carlo also alleviates load balancing issues raised in a recent
parallel DSMC application [4]. For instance, the number of
collision pairs during a given timestep (Eq. (5)) involves the
square of the local template population N, Constant and equal
template sizes used by the DSMC-MLG reduce processor
load variations.

One drawback to the DSMC-MLG algorithm is that the
cost of scalar processing appears more expensive (Table II).
However, coupling a Lagrangian data structure to the DSMC
method provides significant improvements, such as automatic
grid restructuring, to a proven high-Kn tool. Optimizing the
MLG sorting and tracking procedures for a given scalar applica-
tion minimizes the computational penalties. The most efficient
DSMC-MLG implementations will cccur on parallel com-
puter architectures.
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